

YEAR 7 KNOWLEDGE ORGANISERS

BLOCK: ALGEBRAIC THINKING

Sequences

Olgebraic notation

Equality and Equivalence

"MATHS OPENS DOORS"

YEAR 7 — ALGEBRAIC THINKING

Sequences

What do I need to be able to do?

By the end of this unit you should be able to:

- Describe and continue both linear and nonlinear sequences
- Explain term to term rules for linear
- Find missing terms in a linear sequence

Keywords

Orithmetic: an arithmetic sequence is one which is made by adding the same amount each time.

Difference: the gap between two numbers, found by doing a subtraction

Geometric: a geometric sequence is one which is made by multiplying by the same amount each time

Linear: a sequence is linear when the gap between the terms is the same each time.

Non-linear: a sequence is non-linear when the gap between the terms is not the same each time

Position: where a term is in the sequence, e.g. 10^{th} term is the 10^{th} number/shape along

Rule: a way of explaining how to get the terms of a sequence

Sequence: a set of numbers, shapes or patterns in a particular order

Term: one of the numbers, letters, shapes or patterns in a sequence, series or algebraic expression

Describe and continue a sequence diagrammatically

Count the number of circles or lines in each image

Graphicallu

The term in

has 7 squares"

Position

position 3

Predict and check terms

CHECK — draw the next terms

Predictions:

Look at your pattern and consider how it will increase.

e.g. How many lines in pattern 6?

Prediction - 13

If it is increasing by 2 each time - in 3 more patterns there will be 6 more lines

Sequence in a table and graphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

<u>In a table</u>

Position	1	2	3	
Term	3	5	7	
+2 +2				

Because the terms increase by the same addition each time this is **linear** — as seen in the graph

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time

13

Non-inear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci

- Do not plot as straight lines when modelled graphically
- The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this type of sequence

Each term is the sum of the previous two terms.

Continue Linear Sequences

7, 11, 15, 19...

How do I know this is a linear sequence?

It increases by adding 4 to each term.

How many terms do I need to make this conclusion?

Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the

Continue non-linear Sequences

1, 2, 4, 8, 16 ...

How do I know this is a non-linear sequence?

It increases by multiplying the previous term by 2 - this is a geometric sequence because the constant is multiply by 2

How many terms do I need to make this conclusion?

Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the sequence.

Explain term-to-term rule

How you get from term to term

Try to explain this in full sentences not just with mathematical notation.

Use key maths language — doubles, halves, multiply by two, add four to the previous term etc. To explain a whole sequence you need to include a term to begin at...

he next term is found by tripling the previous term. The sequence begins at 4.

YEAR 7 - ALGEBRAIC THINKING

alaebraic notation

What do I need to be able to do?

By the end of this unit you should be able to:

- Be able to use inverse operations and "operation families"
- Be able to substitute into single and two step function machines.
- Find functions from expressions.
- Form sequences from expressions
- Represent functions graphically.

<u>Keywords</u>

Commutative: a mathematical process is commutative if the numbers may be inputted in any order

Evaluate: to find a numerical value for an expression, to 'work it out'

Expression: one or a group of numbers, variables and mathematical operations representing a number or quantity

Function: a mathematical relationship between two values

Input: what is put into a function

Inverse (operation): the opposite or reverse operation

Linear: a sequence is linear when the gap between the terms is the same each time

Operation: a mathematical process such as addition, subtraction, multiplication, division, squaring, square rooting, etc.

Output: what comes out of a function

Sequence: a set of numbers, shapes or patterns in a particular order

Substitute: to put numerical values in place of the letters in an expression

Sinale function machines

The number that comes out

This box gives the calculation instruction

Using letters to represent numbers

5 + 5 + 5	y+y+y+y	20 - h
3 x 5	y x 4	20
5 x 3	4 x y	h
	4y	

Oddition and multiplication can be done in any order Commutative calculations 20 shared into 'h' number of groups

Find functions from expressions

Find the relationship between the input and the output

Sometimes there can be a number of possible functions. eg +7x or x $oldsymbol{\mathcal{A}}$ could both be solutions to the above function machine

Substitution into expressions

If y = 7 this means the expression is asking for 4 'lots of' 7

4 x 7 OR 7 + 7 + 7 + 7 OR 7 x 4

e.a: u-2

Two step function machines

For the input use the **INVERSE** operations

Two step function machines (algebra)

Find functions from expressions

7 - 2 = 5

f add 5 then divide by 3

2(x + 3)

= 28

Sometimes it helps to try to explain the expression in word

and the output becomes u co-ordinates

Representing functions graphically Substitution into an expression Take the function and generate a sequence

sequence

10 + 3 = 13.... 13 x 2 = 26

tormina a sequence

INPUT	l	2	3	The substit
OUTPUT	8	10	12	←

u=2(x + 3)2(x + 3)INPUT (x) OUTPUT (u) tution is the 'input' value UTPUT becomes the

This becomes a co-ordinate pair

(2, 10) to plot on a graph

Not all graphs will be linear only those with an integer value for x. Powers and fractions generate differently shaped graphs.

To represent graphically the input becomes x co-ordinates 14 0VTPUT 8 NOTE: Because this is a linear graph you can predict other values

INPUT

2 3 4 5

YEAR 7 — ALGEBRAIC THINKING

Equality and Equivalence

What do I need to be able to do?

By the end of this unit you should be able

- .Form and solve linear equations
- Understand like and unlike terms Simplify algebraic expressions

! Keuwords

Coefficient: a number which multiples a variable

Equality: the state of being equal

Equal: having the same amount of value

Equation: a mathematical statement connecting two things which are equal. It will contain an equals sing '='

Expression: one or a group of numbers, variables and mathematical operations representing a number or quantity

Index (Indices is plural): a small number written to the upper right of a number or variable which shows how many times the number or letter is multiplied by itself

Inverse (operation): the opposite or reverse operation

Like terms: terms whose variables (such as x and y) and indices (such as the 2 in x^2) are the same

Solution: the answer to a problem

Solve: a command word: find the unknown letter(s) in this problem.

Term: one of the numbers, letters, shapes or patterns in a sequence, series of algebraic expression.

The sum on the left has the san

There is more to this than just

Solve one step equations (+/-)

spotting the answer 42

f = 5

f + 4 = 5

f = 5 = 45 x 4 = f $4 \times 5 = f$

Don't forget you know how to use function machines

Like and unlike terms

Like terms are those whose variables are he same

are **unlike** terms

the variables are NOT the same

Examples and non-examples

Note here ab and ba are commutative operations, so are still like terms

Equivalence

Check equivalence by substitution

5m	2 x 2m	7m - 3m
5 x 10	2 x (2x 10)	(7x 10) - (3x 10)
= 50	= 2 x 20	= 70 — 30
	= 40	= 40

Equivalent expressions

Repeat this with various values for m to check

Collectina like terms \equiv sumbol

The \equiv symbol means equivalent to. It is used to identify equivalent expressions

Collecting like terms

Only like terms can be combined

Common misconceptions

$$2x + 3x^2 + 4x \equiv 6x + 3x^2$$

Olthough they both have the x variable x2 and x terms are unlike terms so can not be collected